Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.197
Filtrar
1.
J Virol ; 98(3): e0191523, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38334327

RESUMO

As an intrinsic cellular mechanism responsible for the internalization of extracellular ligands and membrane components, caveolae-mediated endocytosis (CavME) is also exploited by certain pathogens for endocytic entry [e.g., Newcastle disease virus (NDV) of paramyxovirus]. However, the molecular mechanisms of NDV-induced CavME remain poorly understood. Herein, we demonstrate that sialic acid-containing gangliosides, rather than glycoproteins, were utilized by NDV as receptors to initiate the endocytic entry of NDV into HD11 cells. The binding of NDV to gangliosides induced the activation of a non-receptor tyrosine kinase, Src, leading to the phosphorylation of caveolin-1 (Cav1) and dynamin-2 (Dyn2), which contributed to the endocytic entry of NDV. Moreover, an inoculation of cells with NDV-induced actin cytoskeletal rearrangement through Src to facilitate NDV entry via endocytosis and direct fusion with the plasma membrane. Subsequently, unique members of the Rho GTPases family, RhoA and Cdc42, were activated by NDV in a Src-dependent manner. Further analyses revealed that RhoA and Cdc42 regulated the activities of specific effectors, cofilin and myosin regulatory light chain 2, responsible for actin cytoskeleton rearrangement, through diverse intracellular signaling cascades. Taken together, our results suggest that an inoculation of NDV-induced Src-mediated cellular activation by binding to ganglioside receptors. This process orchestrated NDV endocytic entry by modulating the activities of caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPases and downstream effectors. IMPORTANCE: In general, it is known that the paramyxovirus gains access to host cells through direct penetration at the plasma membrane; however, emerging evidence suggests more complex entry mechanisms for paramyxoviruses. The endocytic entry of Newcastle disease virus (NDV), a representative member of the paramyxovirus family, into multiple types of cells has been recently reported. Herein, we demonstrate the binding of NDV to induce ganglioside-activated Src signaling, which is responsible for the endocytic entry of NDV through caveolae-mediated endocytosis. This process involved Src-dependent activation of the caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPase and downstream effectors, thereby orchestrating the endocytic entry process of NDV. Our findings uncover a novel molecular mechanism of endocytic entry of NDV into host cells and provide novel insight into paramyxovirus mechanisms of entry.


Assuntos
Macrófagos , Doença de Newcastle , Vírus da Doença de Newcastle , Transdução de Sinais , Internalização do Vírus , Animais , Endocitose , Gangliosídeos/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo
2.
Exp Cell Res ; 436(2): 113960, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38311048

RESUMO

PURPOSE: Intracerebral hemorrhage (ICH) results in substantial morbidity, mortality, and disability. Depleting neural cells in advanced stages of ICH poses a significant challenge to recovery. The objective of our research is to investigate the potential advantages and underlying mechanism of exosomes obtained from human umbilical cord mesenchymal stem cells (hUMSCs) pretreated with monosialoteterahexosyl ganglioside (GM1) in the prevention of secondary brain injury (SBI) resulting from ICH. PATIENTS AND METHODS: In vitro, hUMSCs were cultured and induced to differentiate into neuron-like cells after they were pretreated with 150 µg/mL GM1. The exosomes extracted from the culture medium following a 6-h pretreatment with 150 µg/mL GM1 were used as the treatment group. Striatal infusion of collagenase and hemoglobin (Hemin) was used to establish in vivo and in vitro models of ICH. RESULTS: After being exposed to 150 µg/mL GM1 for 6 h, specific cells displayed typical neuron-like cell morphology and expressed neuron-specific enolase (NSE). The rate of differentiation into neuron-like cells was up to (15.9 ± 5.8) %, and the synthesis of N-Acetylgalactosaminyltransferase (GalNAcT), which is upstream of GM1, was detected by Western blot. This study presented an increase in the synthesis of GalNAcT. Compared with the ICH group, apoptosis in the treatment group was remarkably reduced, as detected by TUNEL, and mitochondrial membrane potential was restored by JC-1. Additionally, Western blot revealed the restoration of up-regulated autophagy markers Beclin-1 and LC3 and the down-regulation of autophagy marker p62 after ICH. CONCLUSION: These findings suggest that GM1 is an effective agent to induce the differentiation of hUMSCs into neuron-like cells. GM1 can potentially increase GalNAcT production through "positive feedback", which generates more GM1 and promotes the differentiation of hUMSCs. After pretreatment with GM1, exosomes derived from hUMSCs (hUMSCs-Exos) demonstrate a neuroprotective effect by inhibiting autophagy in the ICH model. This study reveals the potential mechanism by which GM1 induces differentiation of hUMSCs into neuron-like cells and confirms the therapeutic effect of hUMSCs-Exos pretreated by GM1 (GM1-Exos) on an ICH model, potentially offering a new direction for stem cell therapy in ICH.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Humanos , Gangliosídeos/metabolismo , Gangliosídeo G(M1)/metabolismo , Autofagia/fisiologia , Células-Tronco Mesenquimais/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Cordão Umbilical
3.
ACS Chem Neurosci ; 15(3): 656-670, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38206798

RESUMO

Ganglioside GAA-7 exhibits higher neurite outgrowth than ganglioside GM1a and most echinodermatous gangliosides (EGs) when tested on neuron-like rat adrenal pheochromocytoma (PC12) cells in the presence of nerve growth factor (NGF). The unique structure of GAA-7 glycan, containing an uncommon sialic acid (8-O-methyl-N-glycolylneuraminic acid) and sialic acid-α-2,3-GalNAc linkage, makes it challenging to synthesize. We recently developed a streamlined method to chemoenzymatically synthesize GAA-7 glycan and employed this modular strategy to efficiently prepare a library of GAA-7 glycan analogues incorporating N-modified or 8-methoxyl sialic acids. Most of these synthetic glycans exhibited moderate efficacy in promoting neuronal differentiation of PC12 cells. Among them, the analogue containing common sialic acid shows greater potential than the GAA-7 glycan itself. This result reveals that methoxy modification is not essential for neurite outgrowth. Consequently, the readily available analogue presents a promising model for further biological investigations.


Assuntos
Ácido N-Acetilneuramínico , Neurônios , Ratos , Animais , Ácido N-Acetilneuramínico/metabolismo , Neurônios/metabolismo , Gangliosídeos/metabolismo , Polissacarídeos/metabolismo , Células PC12 , Neuritos/metabolismo
4.
Glia ; 72(1): 167-183, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37667994

RESUMO

The postnatal neural stem cell (NSC) pool hosts quiescent and activated radial glia-like NSCs contributing to neurogenesis throughout adulthood. However, the underlying regulatory mechanism during the transition from quiescent NSCs to activated NSCs in the postnatal NSC niche is not fully understood. Lipid metabolism and lipid composition play important roles in regulating NSC fate determination. Biological lipid membranes define the individual cellular shape and help maintain cellular organization and are highly heterogeneous in structure and there exist diverse microdomains (also known as lipid rafts), which are enriched with sugar molecules, such as glycosphingolipids. An often overlooked but key aspect is that the functional activities of proteins and genes are highly dependent on their molecular environments. We previously reported that ganglioside GD3 is the predominant species in NSCs and that the reduced postnatal NSC pools are observed in global GD3-synthase knockout (GD3S-KO) mouse brains. The specific roles of GD3 in determining the stage and cell-lineage determination of NSCs remain unclear, since global GD3S-KO mice cannot distinguish if GD3 regulates postnatal neurogenesis or developmental impacts. Here, we show that inducible GD3 deletion in postnatal radial glia-like NSCs promotes NSC activation, resulting in the loss of the long-term maintenance of the adult NSC pools. The reduced neurogenesis in the subventricular zone (SVZ) and the dentate gyrus (DG) of GD3S-conditional-knockout mice led to the impaired olfactory and memory functions. Thus, our results provide convincing evidence that postnatal GD3 maintains the quiescent state of radial glia-like NSCs in the adult NSC niche.


Assuntos
Células-Tronco Neurais , Camundongos , Animais , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Gangliosídeos/genética , Gangliosídeos/metabolismo , Diferenciação Celular , Camundongos Knockout
5.
ACS Chem Neurosci ; 14(24): 4335-4343, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38050745

RESUMO

Amyloid ß peptide (Aß) is the crucial protein component of extracellular plaques in Alzheimer's disease. The plaques also contain gangliosides lipids, which are abundant in membranes of neuronal cells and in cell-derived vesicles and exosomes. When present at concentrations above its critical micelle concentration (cmc), gangliosides can occur as mixed micelles. Here, we study the coassembly of the ganglioside GM1 and the Aß peptides Aß40 and 42 by means of microfluidic diffusional sizing, confocal microscopy, and cryogenic transmission electron microscopy. We also study the effects of lipid-peptide interactions on the amyloid aggregation process by fluorescence spectroscopy. Our results reveal coassembly of GM1 lipids with both Aß monomers and Aß fibrils. The results of the nonseeded kinetics experiments show that Aß40 aggregation is delayed with increasing GM1 concentration, while that of Aß42 is accelerated. In seeded aggregation reactions, the addition of GM1 leads to a retardation of the aggregation process of both peptides. Thus, while the effect on nucleation differs between the two peptides, GM1 may inhibit the elongation of both types of fibrils. These results shed light on glycolipid-peptide interactions that may play an important role in Alzheimer's pathology.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/metabolismo , Gangliosídeos/metabolismo , Micelas , Gangliosídeo G(M1)/química , Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Fragmentos de Peptídeos/metabolismo
6.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139047

RESUMO

Gangliosides are major glycans on vertebrate nerve cells, and their metabolic disruption results in congenital disorders with marked cognitive and motor deficits. The sialyltransferase gene St3gal2 is responsible for terminal sialylation of two prominent brain gangliosides in mammals, GD1a and GT1b. In this study, we analyzed the expression of calcium-binding interneurons in primary sensory (somatic, visual, and auditory) and motor areas of the neocortex, hippocampus, and striatum of St3gal2-null mice as well as St3gal3-null and St3gal2/3-double null. Immunohistochemistry with highly specific primary antibodies for GABA, parvalbumin, calretinin, and calbindin were used for interneuron detection. St3gal2-null mice had decreased expression of all three analyzed types of calcium-binding interneurons in all analyzed regions of the neocortex. These results implicate gangliosides GD1a and GT1b in the process of interneuron migration and maturation.


Assuntos
Cálcio , Neocórtex , Sialiltransferases , beta-Galactosídeo alfa-2,3-Sialiltransferase , Animais , Camundongos , Calbindina 2/metabolismo , Calbindinas/metabolismo , Cálcio/metabolismo , Gangliosídeos/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Mamíferos/metabolismo , Camundongos Knockout , Mutação , Neocórtex/metabolismo , Sialiltransferases/genética , Sialiltransferases/metabolismo , beta-Galactosídeo alfa-2,3-Sialiltransferase/genética , beta-Galactosídeo alfa-2,3-Sialiltransferase/metabolismo
7.
ACS Chem Neurosci ; 14(23): 4199-4207, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37971427

RESUMO

Alzheimer's disease is a progressive neurodegenerative disease and is the most common cause of dementia. It has been reported that the assembly of amyloid ß-protein (Aß) on the cell membrane is induced by the interaction of the Aß monomer with gangliosides such as GM1. The ganglioside-bound Aß (GAß) complex acts as a seed to promote the toxic assembly of the Aß fibrils. In a previous study, we found that a GM1 cluster-binding peptide (GCBP) specifically recognizes Aß-sensitive ganglioside nanoclusters and inhibits the assembly of Aß on a GM1-containing lipid membrane. In this study, cysteine-substituted double mutants of GCBP were designed and cyclized by intramolecular disulfide bond formation. Affinity assays indicated that one of the cyclic peptides had a higher affinity to a GM1-containing membrane compared to that of GCBP. Furthermore, surface topography analysis indicated that this peptide recognizes GM1 nanoclusters on the lipid membrane. An evaluation of the inhibitory kinetics indicated that the cyclic peptide could inhibit the formation of Aß fibrils with an IC50 value of 1.2 fM, which is 10,000-fold higher than that of GCBP. The cyclic peptide was also shown to have a clearance effect on Aß fibrils deposited on the lipid membrane and suppressed the formation of toxic Aß assemblies. Our results indicate that the cyclic peptide that binds to the Aß-sensitive ganglioside nanocluster is a potential novel inhibitor of ganglioside-induced Aß assembly.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Peptídeos beta-Amiloides/metabolismo , Gangliosídeo G(M1)/química , Ciclização , Doença de Alzheimer/metabolismo , Gangliosídeos/metabolismo , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo
8.
Sci Rep ; 13(1): 16835, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803175

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is a major cause of illness and death but has no effective therapy. The heat-labile enterotoxin LT is a significant virulence factor produced by ETEC. The heat-labile enterotoxin-B (LT-B) subunit may enter host cells by binding to monosialotetrahexosylganglioside-a (GM1a), a monosialoganglioside found on the plasma membrane surface of animal epithelial cells. This research was conducted to develop conformationally comparable peptides to the carbohydrate epitope of GM1a for the treatment of ETEC. We used the LT-B subunit to select LT-B-binding peptides that structurally resemble GM1a. The ganglioside microarray and docking simulations were used to identify three GM1a ganglioside-binding domain (GBD) peptides based on LT-B recognition. Peptides had an inhibiting effect on the binding of LT-B to GM1a. The binding capacity, functional inhibitory activity, and in vitro effects of the GBD peptides were evaluated using HCT-8 cells, a human intestinal epithelial cell line, to evaluate the feasibility of deploying GBD peptides to combat bacterial infections. KILSYTESMAGKREMVIIT was the most efficient peptide in inhibiting cellular absorption of LT-B in cells. Our findings offer compelling evidence that GM1a GBD-like peptides might act as new therapeutics to inhibit LT-B binding to epithelial cells and avoid the subsequent physiological consequences of LT.


Assuntos
Toxinas Bacterianas , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Animais , Humanos , Toxinas Bacterianas/metabolismo , Enterotoxinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli Enterotoxigênica/fisiologia , Gangliosídeo G(M1)/metabolismo , Gangliosídeos/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia
9.
Biomaterials ; 302: 122330, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37742508

RESUMO

Botulinum toxin (BoNT) is a potent neurotoxin that poses a significant threat as a biowarfare weapon and a potential bioterrorist tool. Currently, there is a lack of effective countermeasures to combat BoNT intoxication in the event of a biological attack. Here, we report on a novel solution by combining cell metabolic engineering with cell membrane coating nanotechnology, resulting in the development of glycan-modified cellular nanosponges that serve as a biomimetic and broad-spectrum BoNT detoxification strategy. Specifically, we increase the expression levels of gangliosides on THP-1 cells through metabolic engineering, and then collect the modified THP-1 cell membrane and coat it onto synthetic polymeric cores, creating cellular nanosponges that closely mimic host cells. Our findings demonstrate that higher levels of gangliosides on the cellular nanosponges result in greater binding capacities with BoNT. The glycan-modified cellular nanosponges exhibit superior efficacy in neutralizing BoNT cytotoxicity in vitro when compared to their unmodified counterparts. In a mouse model of BoNT intoxication, the glycan-modified cellular nanosponges show more pronounced survival benefits when administered both as a treatment and a preventative regimen. These results highlight the potential of cellular nanosponges, especially when modified with glycans, as a promising countermeasure platform against BoNT and related clostridial toxins.


Assuntos
Toxinas Botulínicas , Camundongos , Animais , Membrana Celular/metabolismo , Gangliosídeos/metabolismo , Polissacarídeos
10.
Biophys Chem ; 300: 107073, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37413816

RESUMO

Aggregation of Aß peptides is a key contributor to the etiology of Alzheimer's disease. Being intrinsically disordered, monomeric Aß is susceptible to conformational excursions, especially in the presence of important interacting partners such as membrane lipids, to adopt specific aggregation pathways. Furthermore, components such as gangliosides in membranes and lipid rafts are known to play important roles in the adoption of pathways and the generation of discrete neurotoxic oligomers. Yet, what roles do carbohydrates on gangliosides play in this process remains unknown. Here, using GM1, GM3, and GD3 ganglioside micelles as models, we show that the sugar distributions and cationic amino acids within Aß N-terminal region modulate oligomerization of Aß temporally, and dictate the stability and maturation of oligomers. These results demonstrate the selectivity of sugar distributions on the membrane surface toward oligomerization of Aß and thus implicate cell-selective enrichment of oligomers.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/química , Açúcares , Gangliosídeos/química , Gangliosídeos/metabolismo , Doença de Alzheimer/metabolismo , Ligação Proteica , Fragmentos de Peptídeos/química
11.
Cancer Metastasis Rev ; 42(3): 941-958, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37266839

RESUMO

Gangliosides are sialylated glycolipids, mainly present at the cell surface membrane, involved in a variety of cellular signaling events. During malignant transformation, the composition of these glycosphingolipids is altered, leading to structural and functional changes, which are often negatively correlated to patient survival. Cancer cells have the ability to shed gangliosides into the tumor microenvironment, where they have a strong impact on anti-tumor immunity and promote tumor progression. Since most ganglioside species show prominent immunosuppressive activities, they might be considered checkpoint molecules released to counteract ongoing immunosurveillance. In this review, we highlight the current state-of-the-art on the ganglioside-mediated immunomodulation, specified for the different immune cells and individual gangliosides. In addition, we address the dual role that certain gangliosides play in the tumor microenvironment. Even though some ganglioside species have been more extensively studied than others, they are proven to contribute to the defense mechanisms of the tumor and should be regarded as promising therapeutic targets for inclusion in future immunotherapy regimens.


Assuntos
Gangliosídeos , Neoplasias , Humanos , Gangliosídeos/metabolismo , Microambiente Tumoral , Neoplasias/metabolismo , Glicolipídeos , Glicoesfingolipídeos
12.
Glycoconj J ; 40(3): 305-314, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37133616

RESUMO

Glycosphingolipids, including gangliosides, are representative lipid raft markers that perform a variety of physiological roles in cell membranes. However, studies aimed at revealing their dynamic behavior in living cells are rare, mostly due to a lack of suitable fluorescent probes. Recently, the ganglio-series, lacto-series, and globo-series glycosphingolipid probes, which mimic the behavior of the parental molecules in terms of partitioning to the raft fraction, were developed by conjugating hydrophilic dyes to the terminal glycans of glycosphingolipids using state-of-art entirely chemical-based synthetic techniques. High-speed, single-molecule observation of these fluorescent probes revealed that gangliosides were scarcely trapped in small domains (100 nm in diameter) for more than 5 ms in steady-state cells, suggesting that rafts including gangliosides were always moving and very small. Furthermore, dual-color, single-molecule observations clearly showed that homodimers and clusters of GPI-anchored proteins were stabilized by transiently recruiting sphingolipids, including gangliosides, to form homodimer rafts and the cluster rafts, respectively. In this review, we briefly summarize recent studies, the development of a variety of glycosphingolipid probes as well as the identification of the raft structures including gangliosides in living cells by single-molecule imaging.


Assuntos
Corantes Fluorescentes , Glicoesfingolipídeos , Glicoesfingolipídeos/metabolismo , Corantes Fluorescentes/química , Imagem Individual de Molécula , Gangliosídeos/metabolismo , Membrana Celular/metabolismo , Microdomínios da Membrana/metabolismo
13.
Anticancer Res ; 43(6): 2417-2424, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37247922

RESUMO

BACKGROUND/AIM: Using the tyrosine hydroxylase (TH)-MYCN mouse neuroblastoma (NB) model, we have previously reported the accumulation of mouse mesenchymal stem cells (mMSCs) on tumors in vivo and the antitumor effect of mMSCs transfected with a small molecule (IFN-ß) expression gene. In this study, we have developed novel MSCs secreting anti-disialoganglioside GD2 antibody (anti-GD2-MSCs) and evaluated their antitumor effects in vitro. MATERIALS AND METHODS: We generated an anti-GD2 antibody construct (14.G2a-Fcx2-GFP) incorporating FLAG-tagged single-chain fragment variable against GD2 fused to a linker sequence, a fragment of the constant portion of human IgG1, and GFP protein. The construct was lentivirally transduced into mMSCs and the transduction efficiency was assessed by GFP expression. The secretion of FLAG-tagged anti-GD2 antibody was detected by Western blotting using anti-FLAG antibody. Antibody binding capacity was confirmed by flow cytometry. Antibody-dependent cellular cytotoxicity (ADCC) was evaluated using human NB cells and human natural killer (NK) cells to assess whether the antitumor activity was enhanced in the presence of the produced antibodies. RESULTS: The transduction efficiency of anti-GD2-MSCs was more than 90%. anti-GD2-MSCs secreted antibodies extracellularly and these antibodies had high affinity to GD2-expressing human NB cells. ADCC assays showed that the addition of antibodies secreted from anti-GD2-MSCs significantly increased the cytotoxic activity of NK cells against NB cells. CONCLUSION: Newly developed anti-GD2-MSCs produced functional antibodies that have affinity to the GD2 antigen on NB cells and can induce ADCC-mediated cytotoxicity. Anti-GD2-MSCs based cellular immunotherapy has the potential to be a novel therapeutic option for intractable NB.


Assuntos
Anticorpos Monoclonais , Células-Tronco Mesenquimais , Camundongos , Humanos , Animais , Anticorpos Monoclonais/farmacologia , Células Matadoras Naturais , Citotoxicidade Celular Dependente de Anticorpos , Imunoterapia , Gangliosídeos/genética , Gangliosídeos/metabolismo
14.
FEBS Open Bio ; 13(9): 1636-1650, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37052878

RESUMO

Gangliosides are functional components of membrane lipid rafts that control critical functions in cell communication. Many pathologies involve raft gangliosides, which therefore represent an approach of choice for developing innovative therapeutic strategies. Beginning with a discussion of what a disease is (and is not), this review lists the major human pathologies that involve gangliosides, which includes cancer, diabetes, and infectious and neurodegenerative diseases. In most cases, the problem is due to a protein whose binding to gangliosides either creates a pathological condition or impairs a physiological function. Then, I draw up an inventory of the different molecular mechanisms of protein-ganglioside interactions. I propose to classify the ganglioside-binding domains of proteins into four categories, which I name GBD-1, GBD-2, GBD-3, and GBD-4. This structural and functional classification could help to rationalize the design of innovative molecules capable of disrupting the binding of selected proteins to gangliosides without generating undesirable effects. The biochemical specificities of gangliosides expressed in the human brain must also be taken into account to improve the reliability of animal models (or any animal-free alternative) of Alzheimer's and Parkinson's diseases.


Assuntos
Gangliosídeos , Doença de Parkinson , Humanos , Gangliosídeos/metabolismo , Reprodutibilidade dos Testes , Doença de Parkinson/patologia , Encéfalo/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo
15.
Elife ; 122023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36940134

RESUMO

The immunoglobulin-like lectin receptor CD169 (Siglec-1) mediates the capture of HIV-1 by activated dendritic cells (DCs) through binding to sialylated ligands. These interactions result in a more efficient virus capture as compared to resting DCs, although the underlying mechanisms are poorly understood. Using a combination of super-resolution microscopy, single-particle tracking and biochemical perturbations we studied the nanoscale organization of Siglec-1 on activated DCs and its impact on viral capture and its trafficking to a single viral-containing compartment. We found that activation of DCs leads to Siglec-1 basal nanoclustering at specific plasma membrane regions where receptor diffusion is constrained by Rho-ROCK activation and formin-dependent actin polymerization. Using liposomes with varying ganglioside concentrations, we further demonstrate that Siglec-1 nanoclustering enhances the receptor avidity to limiting concentrations of gangliosides carrying sialic ligands. Binding to either HIV-1 particles or ganglioside-bearing liposomes lead to enhanced Siglec-1 nanoclustering and global actin rearrangements characterized by a drop in RhoA activity, facilitating the final accumulation of viral particles in a single sac-like compartment. Overall, our work provides new insights on the role of the actin machinery of activated DCs in regulating the formation of basal Siglec-1 nanoclustering, being decisive for the capture and actin-dependent trafficking of HIV-1 into the virus-containing compartment.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Células Dendríticas/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , HIV-1/fisiologia , Actinas/metabolismo , Lipossomos/metabolismo , Ligantes , Gangliosídeos/metabolismo
16.
Glycoconj J ; 40(3): 315-322, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36933118

RESUMO

It has been clarified that pathogens bind to glycosphingolipid (GSL) receptors in mammals, but there have been very few reports on pathogen-binding GSLs in fish. Vibrios are facultative anaerobic bacteria ubiquitous in marine and brackish environments. They are members of the normal intestinal microflora of healthy fish, but some species can cause a disease called vibriosis in fish and shellfish when the hosts are physiologically or immunologically weakened. The adherence of vibrios to host intestinal tracts is a significant event not only for survival and growth but also in terms of pathogenicity. We show in this mini-review that sialic acid-containing GSLs (gangliosides), GM4 and GM3, are receptors to which vibrios adhere to epithelial cells in the intestinal tract of fish. We also describe the enzymes responsible for synthesizing these Vibrio-binding gangliosides in fish.


Assuntos
Gangliosídeos , Vibrio , Animais , Gangliosídeos/metabolismo , Glicoesfingolipídeos/metabolismo , Intestinos , Peixes/metabolismo , Vibrio/metabolismo , Mamíferos/metabolismo
17.
Sci Rep ; 13(1): 4987, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973292

RESUMO

Exosomes (small extracellular vesicles: EVs) have attracted increasing attention from basic scientists and clinicians since they play important roles in cell-to-cell communication in various biological processes. Various features of EVs have been elucidated regarding their contents, generation and secretion mechanisms, and functions in inflammation, regeneration, and cancers. These vesicles are reported to contain proteins, RNAs, microRNAs, DNAs, and lipids. Although the roles of individual components have been rigorously studied, the presence and roles of glycans in EVs have rarely been reported. In particular, glycosphingolipids in EVs have not been investigated to date. In this study, the expression and function of a representative cancer-associated ganglioside, GD2, in malignant melanomas was investigated. Generally, cancer-associated gangliosides have been shown to enhance malignant properties and signals in cancers. Notably, EVs derived from GD2-expressing melanomas enhanced the malignant phenotypes of GD2-negative melanomas, such as cell growth, invasion, and cell adhesion, in a dose-dependent manner. The EVs also induced increased phosphorylation of signaling molecules such as EGF receptor and focal adhesion kinase. These results suggest that EVs released from cancer-associated ganglioside-expressing cells exert many functions that have been reported as a function of these gangliosides and regulate microenvironments, including total aggravation of heterogeneous cancer tissues, leading to more malignant and advanced cancer types.


Assuntos
Vesículas Extracelulares , Gangliosídeos , Melanoma , Microambiente Tumoral , Humanos , Vesículas Extracelulares/metabolismo , Gangliosídeos/análise , Gangliosídeos/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Linhagem Celular Tumoral
18.
Glycoconj J ; 40(3): 323-332, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36897478

RESUMO

Gangliosides are expressed in nervous systems and some neuroectoderm-derived tumors at high levels and play pivotal roles. However, mechanisms for the regulation of glycosyltransferase genes responsible for the ganglioside synthesis are not well understood. In this study, we analyzed DNA methylation patterns of promoter regions of GD3 synthase (ST8SIA1) as well as mRNA levels and ganglioside expression using human glioma cell lines. Among 5 cell lines examined, 4 lines showed changes in the expression levels of related genes after treatment with 5-aza-dC. LN319 showed up-regulation of St8sia1 and increased b-series gangliosides after 5-aza-dC treatment, and an astrocytoma cell line, AS showed high expression of ST8SIA1 and b-series gangliosides persistently before and after 5-Aza-2'-deoxycytidine treatment. Using these 2 cell lines, DNA methylation patterns of the promoter regions of the gene were analyzed by bisulfite-sequencing. Consequently, 2 regions that were methylated before 5-Aza-2'-deoxycytidine treatment were demethylated in LN319 after the treatment, while those regions were persistently demethylated in AS. These 2 regions corresponded with sites defined as promoter regions by Luciferase assay. Taken together, it was suggested that ST8SIA1 gene is regulated by DNA methylation at the promoter regions, leading to the regulation of tumor phenotypes.


Assuntos
Metilação de DNA , Glioma , Humanos , Azacitidina/farmacologia , Azacitidina/metabolismo , Linhagem Celular Tumoral , Decitabina/farmacologia , Decitabina/metabolismo , Metilação de DNA/genética , Gangliosídeos/genética , Gangliosídeos/metabolismo , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Regiões Promotoras Genéticas/genética
19.
Cell Rep ; 42(2): 112114, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36790933

RESUMO

BK polyomavirus (BKPyV) is an opportunistic pathogen that uses the b-series gangliosides GD1b and GT1b as entry receptors. Here, we characterize the impact of naturally occurring VP1 mutations on ganglioside binding, VP1 protein structure, and virus tropism. Infectious entry of single mutants E73Q and E73A and the triple mutant A72V-E73Q-E82Q (VQQ) remains sialic acid dependent, and all three variants acquire binding to a-series gangliosides, including GD1a. However, the E73A and VQQ variants lose the ability to infect ganglioside-complemented cells, and this correlates with a clear shift of the BC2 loop in the crystal structures of E73A and VQQ. On the other hand, the K69N mutation in the K69N-E82Q variant leads to a steric clash that precludes sialic acid binding. Nevertheless, this mutant retains significant infectivity in 293TT cells, which is not dependent on heparan sulfate proteoglycans, implying that an unknown sialic acid-independent entry receptor for BKPyV exists.


Assuntos
Vírus BK , Polyomavirus , Vírus BK/genética , Vírus BK/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polyomavirus/genética , Polyomavirus/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Gangliosídeos/metabolismo
20.
PLoS One ; 18(2): e0281414, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36827398

RESUMO

Gangliosides, sialic acid-containing glycosphingolipids, are widely involved in regulations of signal transductions to control cellular functions. It has been suggested that GM3, the simplest structure among gangliosides, is involved in insulin resistance, whereas it remains unclear whether insulin signaling diminished by GM3 actually aggravates the pathological conditions in metabolic disorders. Moreover, the functional roles of gangliosides in the regulation of insulin signaling have not yet been fully elucidated in liver or hepatocytes despite that it is one of the major insulin-sensitive organs. To understand physiological roles of GM3 in metabolic homeostasis in liver, we conducted a high fat diet (HFD) loading experiment using double knockout (DKO) mice of GM2/GD2 synthase and GD3 synthase, which lack all gangliosides except GM3, as well as wild-type (WT) mice. DKO mice were strikingly resistant to HFD-induced hepatosteatosis, and hepatic lipogenesis-related molecules including insulin signaling components were down-regulated in HFD-fed DKO. Furthermore, we established primary hepatocyte cultures from DKO and WT mice, and examined their responses to insulin in vitro. Following insulin stimulation, DKO hepatocytes expressing GM3 showed attenuated expression and/or activations in the downstream components compared with WT hepatocytes expressing GM2. While insulin stimulation induced lipogenic proteins in hepatocytes from both genotypes, their expression levels were lower in DKO than in WT hepatocytes after insulin treatment. All our findings suggest that the modified gangliosides, i.e., a shift to GM3 from GM2, might exert a suppressive effect on lipogenesis by attenuating insulin signaling at least in mouse hepatocytes, which might result in protection of HFD-induced hepatosteatosis.


Assuntos
Gangliosídeo G(M3) , Resistência à Insulina , Camundongos , Animais , Insulina/metabolismo , Dieta Hiperlipídica , Transdução de Sinais , Gangliosídeos/metabolismo , Insulina Regular Humana , Gangliosídeo G(M2)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...